Verbrechen durch Mathematik verstehen
- C.Z. Marshak, M.P. Rombach, A.L. Bertozzi, M.R. D'Orsogna, Growth and containment of a hierarchical criminal network, Physical Review E 93(2) (2016), 022308.
- M.R. D'Orsogna, M. Perc, Statistical physics of crime: A review. Physics of life reviews, 12 (2015), 1-21.
- M.B. Short, M.R. D'orsogna, V.B. Pasour, G.E. Tita, P.J. Brantingham, A.L. Bertozzi, L.B. Chayes, A statistical model of criminal behavior, Mathematical Models and Methods in Applied Sciences, 18(supp01) (2008), 1249-1267.
- A.B. Barbaro, L. Chayes, M.R. D’Orsogna, Territorial developments based on graffiti: A statistical mechanics approach, Physica A: Statistical Mechanics and its Applications, 392(1) (2013), 252-270.
- C. Wang, Y. Zhang, A multiscale stochastic criminal behavior model under a hybrid scheme, Electronic Research Archive, 2021.
- L.G. Alves, H.V. Ribeiro, F.A. Rodrigues, Crime prediction through urban metrics and statistical learning, Physica A: Statistical Mechanics and its Applications 505 (2018), 435-443.
- I. Luna-Pla, J.R. Nicolás-Carlock, Corruption and complexity: a scientific framework for the analysis of corruption networks, Applied Network Science 5(1) (2020), 1-18.
- Special Issue of European Journal of Applied Mathematics on Crime Modelling, 2010.
Das Haus des Täters: Was ist Geographic Profiling?
- D.K. Rossmo, Geographic profiling, CRC press, 1999.
- D.K. Rossmo, Geographic profiling: Target patterns of serial murderers, Doctoral dissertation, School of Criminology, Simon Fraser University, 1995.
- D.K. Rossmo, I. Laverty, B. Moore, Geographic profiling for serial crime investigation, Geographic information systems and crime analysis (pp. 102-117). IGI Global, 2005.
- D.K. Rossmo, L. Velarde, Geographic profiling analysis: principles, methods and applications, Crime mapping case studies: Practice and research (2008), 35-43.
- D.K. Rossmo, Recent developments in geographic profiling, Policing: A Journal of Policy and Practice 6(2) (2012), 144-150.
- D.K. Rossmo, S. Rombouts, Geographic profiling, Environmental criminology and crime analysis (pp. 158-172), Willan, 2013.
- M.V. Hauge, M.D. Stevenson, D.K. Rossmo, S.C. Le Comber, Tagging Banksy: Using geographic profiling to investigate a modern art mystery, Journal of Spatial Science, 61(1) (2016), 185-190.
- P. Bengtsen, Hijacking Banksy, SAUC-Street Art and Urban Creativity, 2(1) (2016), 60-66.
- R.A. Martin, D.K. Rossmo, N. Hammerschlag, Hunting patterns and geographic profiling of white shark predation, Journal of Zoology, 279(2) (2009), 111-118.
Wie gross sind die Chancen, dass die DNA-Spur des Verdächtigen gefunden wird?
- J.J. Koehler, A. Chia, S. Lindsey, The random match probability in DNA evidence: Irrelevant and prejudicial?, Jurimetrics (1995), 201-219.
- J.J. Koehler, The base rate fallacy reconsidered: Descriptive, normative, and methodological challenges, Behavioral and brain sciences, 19(1) (1996), 1-17.
- A. Biedermann, F. Taroni, Bayesian networks for evaluating forensic DNA profiling evidence: a review and guide to literature, Forensic Science International: Genetics 6(2) (2012), 147-157.
- A. Drygajlo, D. Meuwly, A. Alexander, Statistical methods and Bayesian interpretation of evidence in forensic automatic speaker recognition, In: Eighth European Conference on Speech Communication and Technology, 2003.
- S. Lindsey, R. Hertwig, G. Gigerenzer, Communicating statistical DNA evidence, Jurimetrics 43 (2002), 147.
- C.S. Vlek, When stories and numbers meet in court: Constructing and explaining Bayesian networks for criminal cases with scenarios, 2016.
- C. Aitken, F. Taroni, Statistics and the evaluation of evidence for forensic scientists, John Wiley & Sons, 2004.
- U. Hoffrage, S. Lindsey, R. Hertwig, G. Gigerenzer, Communicating statistical information, 2000.
- I. Alberink, A. Bolck, S. Menges, Posterior likelihood ratios for evaluation of forensic trace evidence given a two-level model on the data, Journal of Applied Statistics 40(12) (2013), 2579-2600.