Fakultät für Mathematik und Naturwissenschaften

Best-Price Ticketingsysteme: Erst fahren, dann zahlen!

  1. Siemens Mobility, Next Generation Ticketing – the smartest way of payment
  2. P. Bauer, XIXO Siemens Next Generation Ticketing – First Travel, Then Pay!, July 2021.
  3. eos-uptrade / Stadtwerke Osnabrück, The public utilities of the city of Osnabrück (Stadtwerke Osnabrück) were awarded the STADTWERKE AWARD 2020 for their check-in/be-out system by eos.uptrade

Projekt Ride-Hailing Wuppertal

  1. D. Gaul, K. Klamroth, M. Stiglmayr, Event-based MILP models for ride-hailing applications, Preprint, submitted to European Journal of Operations Research, 2021.
  2. S.C. Ho, W.Y. Szeto, Y.-H. Kuo, et al., A survey of dial-a-ride problems: Literature review and recent developments, Transportation Research Part B: Methodological 111 (2018), 395-421.

Das E-Bike und sein Antrieb

  1. C. Abagnale, M. Cardone, P. Iodice, S. Strano, M. Terzo, G. Vorraro, Derivation and validation of a mathematical model for a novel electric bicycle, In: Proceedings of the World Congress on Engineering (Vol. 2), 2015.
  2. G. Thejasree, R. Maniyeri, P. Kulkami, Modeling and Simulation of a Pedelec, In: 2019 Innovations in Power and Advanced Computing Technologies (i-PACT) (Vol. 1, pp. 1-8). IEEE, 2019.
  3. G. Thejasree, R. Maniyeri, E-bike system modeling and simulation, In: 2019 IEEE International Conference on Intelligent Systems and Green Technology (ICISGT) (pp. 9-95). IEEE, 2019.
  4. M.V. Devshete, P.D. Divase, A.D. Dhavale, S.A. Shinde, S.C. Mahadik, E Bike Performance Improvement, 2019.
  5. E. Mesic, A. Masic, E. Muratović, M. Delic, S. Hasanbegovic, Structural Analysis and Optimization of Electric Bike Front Drive with Bottom Bracket Electric Motor, Advances in Science and Technology Research Journal, 15(1) (2021), 273-282.
  6. D.S.H. Abhilash, I. Wani, K. Joseph, R. Jha, K.M. Haneesh, Power Efficient e-Bike with Terrain Adaptive Intelligence, In: 2019 International Conference on Communication and Electronics Systems (ICCES) (pp. 1148-1153). IEEE, 2019.

Das Braess-Paradoxon

  1. Wikipedia, Braess-Paradoxon.
  2. D. Braess, Über ein Paradoxon aus der Verkehrsplanung, Unternehmensforschung 12 (1968), 258-268. [In der Datei auf S. 264 (ubcz) durch (abcz) zu ersetzen.]
  3. G. M. Ziegler, Was denkt der Mathematiker im Stau?, DMV-Mitteilungen 13-2 (2005), 106-108.
  4. J.D. Murchland, Braess's paradox of traffic flow, Transpn. Res. 4 (1970), 391-394.
  5. M.J. Smith, In a road network, increasing delay locally can reduce delay globally, Transpn. Res. 12 (1978), 419-422.
  6. M. Frank, The Braess paradox, Math. Programming 20 (1981), 283-302.
  7. S. Dafermos, A. Nagurney, On some traffic equilibrium theory paradoxes, Transpn. Res. B 18 (1984), 101-110.
  8. R. Steinberg, R. Stone, The prevalence of paradoxes in transportation equilibrium problems, Transpn. Sci. 22 (1988), 231-241.
  9. J.E. Cohen, F.P. Kelly, A paradox of congestion in a queuing network, J. Appl. Prob. 27 (1990), 730-734.
  10. New York Times, What if they closed 42nd Street and nobody noticed?, NYT 25 December 1990, p. 38.
  11. S. Catoni, S. Pallottino, Traffic equilibrium paradoxes, Transpn. Sci. 25 (1991), 240-244.
  12. Ch. Pöppe, Paradoxes Verhalten physikalischer und ökonomischer Systeme, Spektrum der Wissenschaft, 23.-26. Nov. 1992.
  13. B. Calvert, G. Keady, Braess's paradox and power-law nonlinearities in networks, J. Australian Math. Soc. B 35 (1993), 1-22.
  14. A. Knop, Warum mehr Strassen den Verkehrsfluss bremsen, nature 76-77, 3/1993.
  15. R. Arnott, K. Small, The economics of traffic congestion, American Scientist 82, 446-455, Sept/Oct 1994
  16. E.I. Pas, S.L. Principio, Braess' paradox: Some new insight, Transpn. Res. B 31 (1997), 265-276.
  17. W. Blum, Die Logik des Paradoxen, Die Zeit, Nr. 52 (1997), S. 36
  18. G. Alperovich, An economic interpretation of Braess' paradox, Int. J. Transport Economics (1997), 145-155.
  19. G. Szpiro, Irrationales bei Airlines und Passagieren. Das Braess-Paradoxon am Beispiel der Flugroutenwahl, Neue Zürcher Zeitung, 9. Jan. 2006, S. 5
  20. W. Blum, Ewig lockt die Schnellstraße. Psychologen bestätigen ein mathematisches Paradoxon: Manchmal lösen zusätzliche Strecken den Stau erst aus, Süddeutsche Zeitung 24. Jan. 2006, S. 9
  21. A. Rooch, Auf Umwegen schneller zum Ziel, 6. Folge der WAZ-Serie "Was ist Mathematik?" - Das Braess-Paradoxon. Westdeutsche Allgemeine Zeitung, 5. August 2006.
  22. M. Schreckenberg, Es braessiert, OR News, 38 (2010), 18-20.
  23. D.J. Case, Y. Liu, I. Z. Kiss, J.-R. Angilella, A.E. Motter, Braess’s paradox and programmable behaviour in microfluidic networks, Nature 574 (2019), 647-655.
  24. S. Bittihn, A. Schadschneider, Braess’ paradox in the age of traffic information, Journal of Statistical Mechanics: Theory and Experiment 2021(3), 033401.
  25. H.F. Zhang, Z. Yang, Z.X. Wu, B.H. Wang, T. Zhou, Braess's paradox in epidemic game: better condition results in less payoff, Scientific reports, 3(1) (2013), 1-8.
  26. M. Passacantando, G. Gnecco, Y. Hadas, M. Sanguineti, Braess' paradox: A cooperative game‐theoretic point of view, Networks, 2021.

Modellierung, Simulation und Optimierung zur Geräuschreduzierung bei Scheibenbremsen

  1. N. Gräbner, V. Mehrmann, S. Quraishi, C. Schröder, U. von Wagner, Numerical methods for parametric model reduction in the simulation of disc brake squeal, Zeitschrift für Angewandte Mathematik und Mechanik Vol. 96 (2016), 1388-1405.
  2. N. Gräbner, Analyse und Verbesserung der Simulationsmethode des Bremsenquietschens, Dissertation, Technische Universität Berlin, 2016.
  3. C. Mehl, V. Mehrmann, P. Sharma, Stability radii for linear Hamiltonian systems with dissipation under structure-preserving perturbations, SIAM Journal on Matrix Analysis and Applications 37(4) (2016), 1625-1654.
  4. C. Mehl, V. Mehrmann, P. Sharma, Structured distances to instability for linear Hamiltonian systems with dissipation, Matheon Preprint 03/23/2016.
  5. Y. Bavafa-Toosi, Introduction to linear control systems, Academic Press, 2017.

Der Krankenwagen trifft in 15 Minuten ein

  1. A.K. Erlang, The Theory of Probabilities and Telephone Conversations, Nyt Tidsskrift for Matematik B, vol 20, 1909.
  2. A.K. Erlang, Solution of some Problems in the Theory of Probabilities of Significance in Automatic Telephone Exchanges, Elektrotkeknikeren, vol 13, 1917.
  3. E. Brockmeyer, H.L. Halstrom, A. Jensen, The life and works of A.K. Erlang, The Copenhagen Telephone Company, 1948.
  4. J.J. O’Connor, E.F. Robertson, Agner Krarup Erlang, In: MacTutor History of Mathematics archive.
  5. https://plus.maths.org/content/os/issue2/erlang/index
  6. de.wikipedia.org/wiki/Agner_Krarup_Erlang
  7. de.wikipedia.org/wiki/Erlang_C

Optimales Boarding am Flughafen

  1. E. Bachmat, M. Elkin, Bounds on the performance of back-to-front airplane boarding policies, Operations Research Letters 36 (2008), 597-601.
  2. E. Bachmat, D. Berend, L. Sapir, S. Skiena, N. Stolyarov, Analysis of airplane boarding times, Operations Research 57 (2009), 499-513.
  3. E. Bachmat, D. Berend, L. Sapir und S. Skiena, Optimal boarding policies for thin passengers, Adv. Appl. Prob. 39 (2007), 1098-1114.
  4. E. Bachmat, D. Berend, L. Sapir, S. Skiena, N. Stolyarov, Analysis of airplane boarding via space-time geometry and random matrix theory, Journal of Physics A: mathematical and general 39 L453-459.
  5. M. Bauer, K. Bhawalkar, M. Edwards, Boarding at the Speed of Flight, UMAP Journal 237 (2007).
  6. M. Bazargan, A linear programming approach for aircraft boarding strategy, Europ. J. Oper. Res. 183 (2007), 394-411.
  7. P. Ferrari, K. Nagel, Robustness of efficient passenger boarding in airplanes, Transportation Research Board Annual Meeting, paper nr. 05-0405, Washington D.C.
  8. P. Ferrari, Improving passenger boarding in airplanes using computer simulations, International Airport Review.
  9. S. Mas, A.A. Juan, P. Arias, P. Fonseca, A Simulation Study Regarding Different Aircraft Boarding Strategies, Modeling and Simulation in Engineering, Economics, and Management Lecture Notes in Business Information Processing 145 (2013), 145-152.
  10. H.L. Menkes, V.D. Briel, J.R. Villalobos, G.L. Hogg, T. Lindemann, A.V. Mulé, America West Airlines Develops Efficient Boarding Strategies, Interfaces Vol. 35 (2005), 191-200.
  11. R.J. Milne, et al., Adapting the reverse pyramid airplane boarding method for social distancing in times of COVID-19, PloS one vol. 15,11 e0242131. 4 Nov. 2020, doi:10.1371/journal.pone.0242131
  12. D. Rizzo, Evaluating the influence of passenger behaviour on aircraft boarding strategies using multi-agent systems, Technical Report 2009/10.
  13. J.H. Steffen, A statistical mechanics model for free-for-all airplane passenger boarding, Amer. J. Physics Vol. 76 (2008), 1114-1119.
  14. J.H. Steffen, Optimal boarding method for airline passengers, J. Air Transp. Mgmt. Vol. 14 (2008), 146-150, (2008).
  15. A. Steiner, M. Philipp, Speeding up the airplane boarding process by using pre-boarding areas, In: 9th Swiss Transport Research Conference (2009).
  16. T.-Q. Tang, Y.-H. Wub, H.-J. Huang, L. Caccetta, An aircraft boarding model accounting for passengers' individual properties, Transportation Research Part C: Emerging Technologies 22 (2012), 1-16.
  17. M. Van den Briel, J. Villalobobos, G. Hogg, The aircraft boarding problem, Proc. of the 12th Industrial Eng. Res. Conf., IERC, CD ROM, article nr. 2153.
  18. M.H.L. van den Briel, J.R. Villalobos G.L. Hogg GL, T. Lindemann A.V. Mulé, America West Airlines Develops Efficient Boarding Strategies, Interfaces. 2005; 35: 191–201. doi.org/10.1287/inte.1050.0135
  19. H. Van Landeghem, A. Beuselinck, Reducing passenger boarding time in airplanes: A simulation approach, Europ. J. of Operations Research 142 (2002), 294-308.

Weitere Infos über #UniWuppertal: