Fakultät für Mathematik und Naturwissenschaften

Mit Mathematik zur individuellen Therapie

  1. science media center germany, Fact-Sheet, Arzneimittel: Von der Entwicklung bis zur Zulassung, 2017.
  2. C. Maier, N. Hartung, J. de Wiljes, C. Kloft, W. Huisinga, Bayesian data assimilation to support informed decision making in individualized chemotherapy, CPT: pharmacometrics & systems pharmacology 9(3) (2020), 153-164.
  3. C. Maier, N. Hartung, C. Kloft, W. Huisinga, J. de Wiljes, Reinforcement learning and Bayesian data assimilation for model-informed precision dosing in oncology, CPT: pharmacometrics & systems pharmacology 10(3) (2021), 241-254.
  4. C. Maier, J. de Wiljes, N. Hartung, C. Kloft, W. Huisinga, A continued learning approach for model-informed precision dosing: updating models in clinical practice, arXiv preprint arXiv:2106.03752, 2021.
  5. P. Stapor, Efficient computational methods for parameter estimation of ordinary differential equation and mixed-effect models in systems biology, Dissertation, Technische Universität München, 2020.
  6. Wicha, S. G., Märtson, A. G., Nielsen, et al., From therapeutic drug monitoring to model-informed precision dosing for antibiotics, Clinical Pharmacology & Therapeutics 109(4) (2021), 928-941.

Intelligentere Planung macht das Gesundheitswesen effizienter und sicherer

  1. R. Borndörfer, A. Tesch, G. Sagnol, Algorithmen unterstützen OP-Planung, Management & Krankenhaus, p. 20, Wiley, 2019.
  2. G. Sagnol, C. Barner, R. Borndörfer, M. Grima, M. Seeling, C. Spies, K. Wernecke, Robust allocation of operating rooms: A cutting plane approach to handle lognormal case durations, European Journal of Operational Research 271(2) (2018), 420-435.

Bessere Bilder

  1. B. Gustafsson, Mathematics for computer tomography, Physica Scripta, 1996 (T61), 38-43.
  2. F. Natterer, The mathematics of computerized tomography, Society for Industrial and Applied Mathematics, 2001.
  3. J.J. Benedetto, A.I. Zayed (eds.), Sampling, wavelets, and tomography, Springer Science & Business Media, 2012.
  4. T. Salditt, T. Aspelmeier, S. Aeffner, Biomedical Imaging, De Gruyter, 2017.
  5. J. Walden, Analysis of the direct Fourier method for computer tomography, IEEE transactions on Medical Imaging, 19(3) (2000), 211-222.
  6. J.M. Giron-Sierra, Image and 2D Signal Processing, In: Digital Signal Processing with Matlab Examples, Volume 2 (pp. 243-344). Springer, Singapore, 2017.
  7. S.B. Coban, F. Lucka, W.J. Palenstijn, D. Van Loo, K.J. Batenburg, Explorative imaging and its implementation at the FleX-ray Laboratory, Journal of Imaging, 6(4) (2020), 18.

Der Kopf isst mit

  1. R. Kleis, Model dieting, Resource (Wageningen University), 2013.
  2. J. Grasman, Reconstruction of the Drive Underlying Food Intake and Its Control by Leptin and Dieting, PLoS ONE 8(9) (2013), e74997.
  3. J. Grasman, H.L. Callender, M. Mensink, Proportional insulin infusion in closed-loop control of blood glucose, PloS ONE, 12(1) (2017), e0169135.
  4. C.C. Chow, K.D. Hall, The dynamics of human body weight change, PLoS Comput. Biol. 4(3) (2008), e1000045.
  5. M. Ehrhardt, Die Asymptotik der Schokoladen-Diät, Kapitel 7.2 in: Besser als Mathe - Moderne angewandte Mathematik aus dem Matheon zum Mitmachen, Vieweg-Verlag, 2010, Seiten 238-248.

Die optimale Dosisfindung von Antibiotika

  1. Niels Neveling, Mathematische Modellierung von Pharmakokinetik und Pharmakodynamik antibiotischer Substanzen, Bachelorarbeit, Bergische Universität Wuppertal, 2015.
  2. V.H. Tam, M. Nikolaou, A Novel Approach to Pharmacodynamic Assessment of Antimicrobial Agents: New Insights to Dosing Regimen Design, PLOS Computational Biology, Januar 2011.
  3. G. Koch, Modeling of Pharmacokinetics and Pharmacodynamics with Application to Cancer and Arthritis, Universität Konstanz, Dissertation, 2012.
  4. P.G. Ambrose, S.M. Bhavnani, C.M. Rubino, A. Louie, T. Gumbo, A. Forrest, G.L. Drusano, Pharmacokinetics-Pharmacodynamics of Antimicrobial Therapy: It’s Not Just for Mice Anymore, Clinical Infectious Diseases 44 (2007), 37-42.
  5. W.A. Craig, S.C. Ebert, Killing and regrowth of bacteria in vitro: a review, Scand. J. Infect. Dis. Suppl. 74 (1990), 63–70.
  6. A. Clark, Applied Pharmacology. 4. Berlin : Springer-Verlag, 1937.
  7. W.A. Craig, In Vitro and Animal PK/PD Models, Springer Science+Business Media New York, 2014.
  8. A. Dalhoff, A. Macgowan, O. Cars, B. Wiedemann, U. Ullmann, A. Bauernfeind, A. Schmidt, Comparative evaluation of seven different in vitro pharmacodynamic models of infection, 43rd International Conference on Antimicrobial Agents and Chemotherapy, September 2003. – Chicago, USA.
  9. A. Forrest, Pharmacodynamics of Intravenous Ciprofloxacin in Seriously Ill Patients, Antimicrobial Agents And Chemotherapy 37(5) (1993).
  10. D.H. Howard, R.D. Scott, The Economic Burden of Drug Resistance, Clinical Infectious Diseases 41 (2005), 283–286.
  11. P. Macheras, A. Iliadis, Modeling in Biopharmaceutics, Pharmacokinetics, and Pharmacodynamics, Vol. 30. Springer Science+Business Media, Inc., 2006.
  12. S.R. Ott, B.M. Hauptmeier, C. Ernen, P.M. Lepper, E. Nuesch, M.W. Pletz, J. Hecht, T. Welte, T.T. Bauer, Treatment failure in pneumonia: impact of antibiotic treatment and cost analysis, European Respiratory Journal 39(3), 611–618.
  13. RXKINETICS: PK/PD Approach to Antibiotic Therapy Review. www.rxkinetics.com/antibiotic_pk_pd.html
  14. J. Turnidge, Pharmacokinetics and Pharmacodynamics of Fluoroquinolones, Drugs Suppl. 2 58 (1991), 29–36.
  15. R. Wise, Maximizing efficacy and reducing the emergence of resistance, J. Antimicrobial Chemotherapy 51 (2003), 37–42.

Weitere Infos über #UniWuppertal: