Fakultät für Mathematik und Naturwissenschaften

Origami-Mathematik im Museum für Moderne Kunst

  1. E.D. Demaine, J. O'Rourke. Geometric folding algorithms: linkages, origami, polyhedra, Cambridge University Press, 2007.
  2. E. Demaine, M. Demaine, Recent results in computational origami, Proceedings of the 3rd International Meeting on Origami Science, Math, and Education (A.K. Peters, Monterey, CA), 2001, pp. 3–16.
  3. E. Demaine, M. Demaine, J. Mitchell, Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami, Comp. Geom. Theor. Appl. 16 (2000), 3–21.
  4. S. Felton, M. Tolley, E. Demaine, D. Rus, R. Wood, A method for building self-folding machines, Science, 345(6197) (2014), 644-646.
  5. E. Hawkes, B. An, N.M. Benbernou, H. Tanaka, S. Kim, E.D. Demaine, R.J. Wood, Programmable matter by folding, Proceedings of the National Academy of Sciences, 107(28) (2010), 12441-12445.

Liebeslyrik: Petrarca und Laura: Chaos in Liebesaffären

  1. K. Barley, A. Cherif, Stochastic nonlinear dynamics of interpersonal and romantic relationships, Appl. Math. Comput. 217 (2011), 6273-6281.
  2. N. Bielczyka, M. Bodnarb, U. Forys, Delay can stabilize: Love affairs dynamics, Appl. Math. Comput. 219 (2012), 3923-3937.
  3. F. Breitenecker, F. Judex, N. Popper, K. Breitenecker, A. Mathe, A. Mathe, Love emotions between Laura and Petrarch - an approach by mathematics and system dynamics, J. Comput. Inform. Technol. 4 (2008), 255-269.
  4. E. Buder, A nonlinear dynamic model of social interaction, Commun. Res. 18 (1991), 174-198.
  5. G. Feichtinger, S. Jürgensen, A.J. Novak, Petrarcha's Canzoniere: rational addiction and amorous cycles, J. Math. Soc. 23 (1999), 225-240.
  6. J.M. Gottman, J.D. Murray, C.C Swanson, R. Tyson und K.R. Swanson, The mathematics of marriage, Cambridge, MA: MIT Press, 2002.
  7. A. Gragnani, S. Rinaldi, G. Feichtinger, Cyclic dynamics in romantic relationships, Int. J. Bifurcat. Chaos 7 (1997), 2611-2619.
  8. F.J. Jones, The structure of Petrarch's Canzoniere, Cambridge: Brewer, 1995.
  9. X. Liao, J. Ran, Hopf bifurcation in love dynamical models with nonlinear couples and time delays, Chaos Solitons Fract. 31 (2007), 853-865.
  10. L. Liebovitch, V. Naudot, R. Vallacher, A. Nowak, L.-B. Wrzosinska, P. Coleman, Dynamics of two-actor cooperation-conflict models, Physica A 387 (2008), 6360-6378.
  11. K. Mogielski, T. Platkowski, A mechanism of dynamical interactions for two-person social dilemmas, J. Theor. Biol. 260 (2009), 145-150.
  12. M.J. Radzicki, Dyadic processes, tempestuous relationships, and system dynamics, System Dynamics Review 9 (1993), 79-94.
  13. A. Rapoport, Fights, games and debates, Ann Arbor: University of Michigan Press, 1960.
  14. J.-M. Rey, A mathematical model of sentimental dynamics accounting for marital dissolution, PLoS ONE 5 (2010), e9881.
  15. S. Rinaldi, Love dynamics: the case of linear couples, Applied Mathematics and Computation 95 (1998), 181-192.
  16. S. Rinaldi, Laura and Petrarch: An intriguing case of cyclical love dynamics, SIAM Journal on Applied Mathematics 58 (1998), 1205-1221.
  17. S. Rinaldi und A. Gragnani, Love dynamics between secure individuals: A modeling approach, Nonlinear Dynamics, Psychology, and Life Sciences 2 (1998), 283-301.
  18. S. Rinaldi, F.D. Rossa, F. Dercole, Love and appeal in standard couples, Int. J. Bifurcat. Chaos 20 (2010), 2443-2451.
  19. E. Scharfe, K. Bartholomew, Reliability and stability of adult attachment patterns, Personal Relationships 1 (1994), 23-43.
  20. P.D Sozou, R.M Seymour, Costly but worthless gifts facilitate courtship, Proc. R. Soc. B. 272(1575) (2005), 1877-1884.
  21. J.C. Sprott, Chaos and time-series analysis, Oxford University Press, 2003.
  22. J.C. Sprott, Dynamical Models of Love, Nonlinear Dynamics, Psychology, and Life Sciences, 8 (2004), 303-313.
  23. R.J. Sternberg, The triangular theory of love, Psychological Review 93 (1986), 119-135.
  24. R.J. Sternberg, M.L. Barnes (Eds.), The psychology of love, Yale University Press, 1988.
  25. S.H. Strogatz, Love affairs and differential equations, Mathematics Magazine, 61(1) (1988), 35-35.
  26. S.H. Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering, Reading, MA: AddisonWesley, 1994.
  27. J. Wauer, D. Schwarzer, G. Cai, Y. Lin, Dynamical models of love with time-varying fluctuations, Appl. Math. Comput. 188 (2007), 1535-1548.

Der Zahn der Zeit: Digitale Rekonstruktionen von Gemälden von Vincent van Gogh

  1. A. Adhikary, N. Bhandari, E. Markou, S. Sachan, ArtGAN: Artwork Restoration using Generative Adversarial Networks, 2021 13th International Conference on Advanced Computational Intelligence (ICACI), 2021, pp. 199-206.
  2. E. Cetinic, T. Lipic, S. Grgic, Learning the Principles of Art History with convolutional neural networks, Pattern Recognition Letters 129 (2020), 56-62.
  3. B. Cornelis, A. Dooms, I. Daubechies, P. Schelkens, Report on digital image processing for art historians. In SAMPTA'09 (Special session on sampling and (in) painting), 2009.
  4. B. Cornelis, A. Dooms, J. Cornelis, F. Leen, P. Schelkens, Digital painting analysis, at the cross section of engineering, mathematics and culture, In 2011 19th European Signal Processing Conference, IEEE, 2011, pp. 1254-1258.
  5. I. Daubechies, Developing mathematical tools to investigate art, Bridges: Towson 2012 (2012), 9-16.
  6. I. Daubechies, The Master’s Hand: Can Image Analysis Detect the Hand of the Master?, Green Family Lecture Series, YouTube Video, 2016.
  7. M. Fiorucci, M. Khoroshiltseva, M. Pontil, et al., Machine Learning for Cultural Heritage: A Survey, Pattern Recognition Letters 133 (2020), 102-108.
  8. C.R. Johnson, E. Hendriks, I.J. Berezhnoy, E. Brevdo, S.M. Hughes, I. Daubechies, J.Z. Wang, Image processing for artist identification, IEEE Signal Processing Magazine, 25(4) (2008), 37-48.
  9. M. Milovanović, G. Medić-Simić, Aesthetical criterion in art and science, Neural Comput. & Applic. 33 (2021), 2137-2156.
  10. C. Montagner, R. Jesus, N. Correia, et al., Unveiling the hand of a 19 th century artist with binary image classification and bag-of-features, In 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP), IEEE 2012, pp. 201-204.
  11. Y. Zeng, J. Tang, J.C. van der Lubbe, M. Loog, Learning algorithms for digital reconstruction of Van Gogh’s drawings, In Euro-Mediterranean Conference, Springer, Cham, 2016, pp. 322-333.
  12. Y. Zeng, J.C. van der Lubbe, M. Loog, Multi-scale convolutional neural network for pixel-wise reconstruction of Van Gogh’s drawings, Machine Vision and Applications 30(7) (2019), 1229-1241.
  13. Y. Zeng, Y. Gong, X. Zeng, Controllable digital restoration of ancient paintings using convolutional neural network and nearest neighbor, Pattern Recognition Letters 133 (2020), 158-164.

Weitere Infos über #UniWuppertal: