Wie funktioniert Autonomes Fahren?
- J. Frochte, Maschinelles Lernen - Grundlagen und Algorithmen in Python, 3. Auflage, Carl Hanser Verlag, 2020.
- P. Wilmott, Machine Learning: An Applied Mathematics Introduction, Panda Ohana Publishing, 2019.
- M.P. Deisenroth, A.A. Faisal, C.S. Ong, Mathematics for machine learning, Cambridge University Press, 2020.
- B. Shi, S.S. Iyengar, Mathematical Theories of Machine Learning - Theory and Applications, Springer, Berlin, 2020.
- R. Searcy, Machine Learning Takes Automotive Radar Further, Aptiv white paper, 2020.
- Y. Zhou, O. Tuzel, Voxelnet: End-to-end learning for point cloud based 3d object detection, Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 4490-4499.
- C.R. Qi, et al., Pointnet: Deep learning on point sets for 3d classification and segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 652-660.
- B.R. Kiran, et al., Deep reinforcement learning for autonomous driving: A survey, IEEE Transactions on Intelligent Transportation Systems, 2021.
Mathematische Architekturen für Neuronale Netze
- S. Dittmer, T. Kluth, P. Maass, D.O. Baguer, Regularization by architecture: A deep prior approach for inverse problems, Journal of Mathematical Imaging and Vision 62, no. 3 (2020): 456-470.
- D.O. Baguer, J. Leuschner, M. Schmidt, Computed tomography reconstruction using deep image prior and learned reconstruction methods, Inverse Problems 36, no. 9 (2020): 094004.
- S. Dittmer, T. Kluth, M.Thorstein, R. Henriksen, P. Maass, Deep image prior for 3D magnetic particle imaging: A quantitative comparison of regularization techniques on Open MPI dataset, arXiv preprint arXiv:2007.01593 (2020).
- A. Qayyum, I. Ilahi, F. Shamshad, Untrained Neural Network Priors for Inverse Imaging Problems: A Survey, 2021.
- P. Cascarano, A. Sebastiani, M. Colomba Comes, Combining Weighted Total Variation and Deep Image Prior for natural and medical image restoration via ADMM, arXiv preprint arXiv:2009.11380 (2020).
- P. Cascarano, G. Franchini, F. Porta, A. Sebastiani, Solving discrepancy constrained Deep Image Prior with explicit and implicit regularization via ADMM.
Wie soziale Netzwerke bei der Behebung von Softwarefehlern helfen
- M.S. Zanetti, I. Scholtes, C.J. Tessone, F. Schweitzer, Categorizing bugs with social networks: a case study on four open source software communities, In: 2013 35th International Conference on Software Engineering (ICSE) (pp. 1032-1041). IEEE, 2013.
- M.S. Zanetti, I. Scholtes, C.J. Tessone, F. Schweitzer, The rise and fall of a central contributor: Dynamics of social organization and performance in the gentoo community, In: 2013 6th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE) (pp. 49-56). IEEE, 2013.
- A. Schnabel, Entwicklung einer Heuristik für den Testbedarf von Open Source Softwareprojekten auf einer Social Coding Site.
Die Mathematik hinter den Empfehlungen von Netflix und Amazon Prime
- https://www.netflixprize.com/
- https://en.wikipedia.org/wiki/Netflix_Prize
- Y. Koren, The BellKor Solution to the Netflix Grand Prize, (2009).
https://www.asc.ohio-state.edu/statistics/dmsl/GrandPrize2009_BPC_BellKor.pdf - A. Töscher, M. Jahrer, R. Bell, The BigChaos Solution to the Netflix Grand Prize, (2009).
- M. Piotte, M. Chabbert, The Pragmatic Theory solution to the Netflix Grand Prize, (2009).
- https://www.wired.com/2009/06/1-million-netflix-prize-so-close-they-can-taste-it/
- https://www.wired.com/2009/09/bellkors-pragmatic-chaos-wins-1-million-netflix-prize/
- E.J. Candes and T. Tao, The Power of Convex Relaxation: Near-Optimal Matrix Completion, IEEE Transactions on Information Theory, 56(5) (2010), 2053-2080, doi: 10.1109/TIT.2010.2044061.
- T. Hastie, R. Mazumder, J.D. Lee, R. Zadeh, Matrix completion and low-rank SVD via fast alternating least squares, The Journal of Machine Learning Research, 16(1) (2015), 3367-3402.
Sprachen durch Zählen von Wörtern bändigen
- A. Koutsoudas, Mechanical translation and Zipf's law, Language (1957), 545-552.
- M. Turchi, T. De Bie, C. Goutte, N. Cristianini, Learning to translate: A statistical and computational analysis, Advances in Artificial Intelligence, 2012.
- I. Kanter, H. Kfir, B. Malkiel, M. Shlesinger, Identifying universals of text translation, Journal of Quantitative Linguistics, 13(01) (2006), 35-43.
- V.V. Bochkarev, E.Y. Lerner, The Zipf law for random texts with unequal letter probabilities and the Pascal pyramid, Russian Mathematics, 56(12) (2012), 25-27.